

SECURE SPACE NETWORKING

June 5, 2003

Howard Weiss
NASA/JPL/SPARTA
410-872-1515
hsw@sparta.com

AGENDA

- Background
- Space Security Issues, Threats, Requirements
- Security Paradigms
- Applicable Security Standards
- Summary

HRCKER MEWS METWORK

1999 - http://www.hackernews.com

Security Analysis of Satellite Command and Control Uplinks

By Brian Oblivion, L0pht Heavy Industries

"Many critical information paths flow over satellites orbiting our earth. A box floating in space seems to be a likely target for hacker groups or renegade nation-states...

There are two methods of compromising a satellite by an external threat vector. One is an attack directly on the Satellite by a rogue Ground Station. The second is an attack on the Master Ground Station...

Space mission protocol design information is available on NASA sites..."

- Civil mission security:
 - Almost non-existent in the past
 - ♦ "our systems are so hard for us to manage that no one else will be able to figure them out"
 - ❖ Acknowledgement that future missions require security – e.g., Space Station, weather satellites
- Military mission security:
 - Quite the opposite of civil missions
 - ♦ Security is a mandate

Space Security Issues

- Space missions need to protect
 - spacecraft and ground equipment
 - information and data contained within the systems
 - communications and data processing services
- Space mission security <u>services</u> are important
 - * as network interconnectivity increases...
 - shouldn't wait for a problem to happen
 - must tailor to space mission application
- Security standardization is good
 - enables interoperability and compatibility
- Various layers possible for security services
 - application, network, data link/physical

Generic Threats to Space Missions

Security Paradigms

encrypt

Security Paradigms (cont)

- End-to-End security
 - source to destination (writer to reader)
 - requires non-encrypted headers for routing (e.g., encryption above network or transport layer)

Applicable Security Standards

- <u>IPSEC</u> (Internet Protocol Security)
 - Internet standard security protocol
 - * Heavy overhead Assumes ground-based bandwidth availability
- <u>SCPS-SP</u> (DoD/NASA Space Communications Protocol Suite Security Protocol)
 - Light-weight IPSEC
 - * CCSDS, ISO, and MIL standard
 - ♦ CCSDS 713.5-B-1
 - ◆ ISO 15892:2000
- CCSDS Layer 2 Packet Telemetry /Telecommand
 - Security layer above or below the transfer frame
 - ECSE (encrypted CCSDS Security Experiment)
- Military (NSA Type 1 equipments)
 - ❖ HAIPE IPSec for military
- Application Layer: TLS/SSL

IPSEC Encapsulating Security Payload

- ◆ IETF (internet) ESP standard (RFC 2406)
 - * Required in IPv6 (optional in IPv4)
- Designed for general Internet use
 - High bandwidth environments (e.g., fiber)
- Rich and robust (in terms of features)
- High protocol overhead
 - * 10 bytes/packet (plus variable amount of padding and variable authentication data)

SCPS Security Protocol (SCPS-SP)

- ISO/CCSDS Standard
 - * ISO 15892:2000
 - * CCSDS 715.5-B-1
- Designed for space communications
 - * Low bandwidth environments, short contact times
- Less rich and less robust than IPSEC ESP (in terms of features)
- Therefore, low protocol overhead
 - 2 bytes/packet (plus padding and authentication)

CCSDS Layer 2 Security

Conventional CCSDS telecommand and telemetry

Application Layer Security

- ◆ IETF Transport Layer Security (TLS)
 - * RFC 2246
 - aka Secure Socket Layer (SSL)
 - "payload" encryption above the transport layer
 - ♦ Transport and below headers are untouched
 - Does not rely on any protocol stack mechanisms
 - Provides "writer to reader" security
 - But, each application has to re-invent the wheel (sort of)

Summary

- Security has been and is an integral part of Military space
 - ❖ Becoming more integral in Civilian space
- Standards-based options are available
 - ❖ Provides the ability to get out of the mode of reinvention for each mission.
 - Provides off-the-shelf solutions
 - Provides means of interoperability and crosssupport

- 1. Interplanetary Internet: An Architectural Framework for Space Internetworking: Adrian Hooke
- 2. User Data Services for Internet Based Spacecraft Applications: Joe Smith
- 3. CCSDS File Delivery Protocol (CFDP): Tim Ray
- 4. Internet Protocol Based Standards for Spacecraft Onboard Interfaces: Joe Smith
- 5. Standard Spacecraft Interfaces and IP Network Architectures: Jane Marquart
- 6. Standard Transport and Network Capabilities: Bob Durst
- 7. Next Generation Space Internet: Standards and Implementation: Keith Scott
- 8. Secure Space Networking: Howie Weiss
- 9. Delay Tolerant Networking: Scott Burleigh

